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Entangled quantum states are an important component of quantum computing tech-
niques such as quantum error-correction, dense coding, and quantum teleportation. We
describe how to generate fully entangled states in the Hilbert spaceCN⊗ CN starting
from a unitary matrix and show that they form an orthonormal basis in this space.
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Entanglement (Hardy and Steeb, 2001; Nielsen and Chuang, 2000;
Preskill, 2000; Schr¨odinger, 1935; Steeb and Hardy, 2000, 2002) is the charac-
teristic trait of quantum mechanics that enforces its entire departure from classical
lines of thought. We consider entanglement of pure states. For example in the
product Hilbert spaceC2⊗ C2 the Bell states

|8+〉 = 1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉), |8−〉 = 1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|9+〉 = 1√
2

(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉), |9−〉 = 1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

are fully entangled states and form an orthonormal basis inC4. Here{|0〉, |1〉} is
an arbitrary orthonormal basis in the Hilbert spaceC2. If we choose

|0〉 =
(

eiφ cosθ

sinθ

)
, |1〉 =

(
−eiφ sinθ

cosθ

)
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we obtain

|8+〉 = 1√
2


e2iφ

0

0

1

 , |8−〉 = 1√
2


e2iφ cos(2θ )

eiφ sin(2θ )

eiφ sin(2θ )

−cos(2θ )



|9+〉 = 1√
2


−e2iφ sin(2θ )

eiφ cos(2θ )

eiφ cos(2θ )

sin(2θ )

 , |9−〉 = 1√
2


0

eiφ

−eiφ

0

 .
If we chooseφ = 0 andθ = 0 which simply means we choose the standard basis
for |0〉 and|1〉 (i.e. |0〉 = (1 0)T and|1〉 = (0 1)T we find that the Bell states take
the form

|8+〉 := 1√
2


1

0

0

1

 , |8−〉 := 1√
2


1

0

0

−1



|9+〉 := 1√
2


0

1

1

0

 , |9−〉 := 1√
2


0

1

−1

0

 .
We describe how to generate fully entangled states in the Hilbert spaceCN ⊗ CN =
CN2

and show that they form an orthonormal basis in this space.
Consider the Hilbert spaceCN . Let

{|φk〉 : k = 0, 1,. . . , N − 1} (1)

be an orthonormal basis in CN . Thus〈φ j |φk〉 = δ jk and

N−1∑
k=0

|φk〉〈φk| = IN (2)

whereIN is theN × N unit matrix. The last relation is the completeness relation.
Next we define the matrix

U :=
N−2∑
k=0

|φk〉〈φk+1| + |φN−1〉〈φ0|. (3)
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Thus we can also write

U :=
N−1∑
k=0

|φk modN〉〈φk+1 modN |. (4)

For example, inC2 we obtain the Pauli matrixσx if |φ0〉 = (1, 0)T and |φ1〉 =
(0, 1)T and the Pauli matrixσz if |φ0〉 = 1√

2
(1, 1)T and|φ1〉 = 1√

2
(1,−1)T.

The set of matrices{U, U2, . . . , U N} form a commutative group under matrix
multiplication whereU N = IN . We also have tr(U ) = 0 and det(U ) = −1 if N is
even and det(U ) = 1 if N is odd. The eigenstates of the unitary matrixU satisfy

U |θ j 〉 = exp(−i θ j )|θ j 〉, j = 0, 1,. . . , N − 1 (5)

where θ j := 2π j/N. Thus the set of eigenvalues{exp(−i θ j ) : j = 0, 1,. . . ,
N − 1} form a commutative group under multiplication. The group given above
and this group are isomorphic. ForN →∞ we have the Lie group U (1).

For the standard basis inCN the matixU is given by

U =



0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
...

...

0 0 0 0 . . . 1

1 0 0 0 . . . 0


. (6)

Then the set of matrices{U, U2, . . . , U N} is a subgroup of the group of allN × N
permutation matrices under matrix multiplication.

Schwinger (2000) showed that theN × N matricesU (given by (6)) and the
N × N diagonal matrix

Z :=



1 0 0 . . . 0

0 ζ 0 . . . 0

0 0 ζ 2 . . . 0
...

...
...

...
...

0 0 0 . . . ζ N−1


.

whereζ N = 1 satisfy the relationUZ= ζZU. Furthermore the set of matrices

{Uk Z j : k, j = 0, 1,. . . , N − 1}
provide a basis in the Hilbert space (Steeb, 1998) of allN × N matrices overC
with the scalar product〈A|B〉 := tr(AB∗)/N. Schwinger (2000) also noticed that
if one goes from the discrete finite dimensional case to the continuous case the
position-momentum description is recovered.



P1: GCR

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475674 November 12, 2003 1:22 Style file version May 30th, 2002

2850 Hardy, Steeb, and Stoop

The normalized eigenvectors ofU given by (3) are

|θ j 〉 = 1√
N

N−1∑
k=0

exp(−i 2π jk)|φk〉 (7)

where j = 0, 1,. . . , N − 1. If we considerU given by (6) (i.e. the standard basis
is selected), then we find the eigenvectors

1√
N

(1, exp(−i 2π j/N), exp(−i 4π j/N), . . . , exp(−i 2(N − 1) j/N))T.

Thus for the eigenvalue 1 ofU we find the normalized eigenvector

1√
N

(1, 1,. . . , 1)T.

The eigenstates{|θ j 〉 : j = 0, 1,. . . , N − 1} and the orthonormal basis given
above are connected by the discrete Fourier transform

|θ j 〉 = 1√
N

N−1∑
k=0

exp(−ikθ j )|φk〉, |φk〉 = 1√
N

N−1∑
j=0

exp(ikθ j )|θ j 〉. (8)

Next we introduce the two matrices

n̂ :=
N−1∑
k=0

k|φk〉〈φk|, θ̂ :=
N−1∑
j=0

θ j |θ j 〉〈θ j |. (9)

We have [U, θ̂ ] = 0. The hermitian matrix̂n can be considered as the number
operator with the eigenvalues 0, 1, 2,. . . , N − 1. The matrixn̂ is diagonal in the
standard basis. The matrixθ̂ is called the Pegg–Barnett phase operator (Pegg and
Barnett, 1997). We note that an outstanding problem in quantum mechanics is the
search for a “proper” phase operator. A number of theories for such operators have
been proposed, but most of them succumb to one or more of three shortcomings:
(i) the operator is non-selfadjoint, (ii) no scheme for an experimental realization,
(iii) the operator is operationally defined, leaving the questions open as to what
observable the measurement apparatus really represents and what the conjugate
observable is (Trifonovet al., 2000).

The matrixn̂ has the property

exp(±i θ j n̂)|φk〉 = exp(±i θ j k)|φk〉, exp(±i θ j n̂)|θk〉 = |θk∓ j modN〉. (10)

The matrixθ̂ has the properties

exp(±ikθ̂ )|θ j 〉 = exp(±ikθ j )|θ j 〉, exp(±ikθ̂ )|φm〉 = |φm∓k modN〉. (11)

Note that the matriceŝn and θ̂ do not commute. Using these two matrices we
introduce the matrices

V̂jk := exp(i θ j n̂) exp(−ikθ̂ ) (12)
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where j , k = 0, 1,. . . , N − 1 and V00 = IN . Obviously theseN2 matrices are
unitary. Inserting (9), (10), and (11) into (12) we can write

V̂jk :=
N−1∑
m=0

exp(i θ j m)|φmmodN〉〈|φm+k modN |. (13)

Let

|8〉 := 1√
N

N−1∑
k=0

|φk〉 ⊗ |φk〉 (14)

where⊗ denotes the Kronecker product of matrices (Steeb, 1997). This state is
independent of the chosen basis in each subsystem. Using this state we define the
N2 states

|8 jk〉 := (V̂jk ⊗ IN)|8〉 ≡ (exp(i θ j n̂) exp(−ikθ̂ )⊗ IN)8〉 (15)

where |8〉 = |800〉. It can easily be shown that theN2 vectors|8 jk〉 form an
orthonormal basis in the Hilbert spaceCN2

, i.e. we have〈8 jk |8mn〉 = δ jmδkn and

N−1∑
j=0

N−1∑
k=0

|8 jk〉〈8 jk | = IN ⊗ IN = IN2.

The measure for entanglement for pure statesE(|ψ〉〈ψ |) is defined as follows
(Hardy and Steeb, 2001; Nielsen and Chuang, 2000; Preskill, 2000; Steeb and
Hardy, 2000, 2002)

E(|ψ〉〈ψ |) := Sdim(H1)(ρH1) = Sdim(H2)(ρH2) (16)

whereH1 = H2 = CN and the density operators are defined as

ρH1 := TrH2|ψ〉〈ψ |, ρH2 := TrH1|ψ〉〈ψ | (17)

andSb(ρ) := −Trρ logb ρ. Tr denotes the trace and TrH1 denotes the partial trace
overH1. We use the baseb for the logarithm logb. We have 0 logb 0= 0 and
1 logb 1= 0. Thus 0≤ E ≤ 1. If E = 1 we call the pure state maximally entan-
gled. If E = 0, the pure state is not entangled. We note that

Sb(ρ) := −
k∑

j=1

λ j logb λ j

where{λ j : j = 1, . . . , k} are the eigenvalues ofρ andρ is a linear operator on a
k-dimensional Hilbert space.

Using this definition for entanglement of pure states we find that the states
|8 jk〉 are maximally entangled. We obtain

|8 jk〉〈8 jk | = 1

N

N−1∑
l=0

N−1∑
m=0

exp(i θ j (l −m))|φl+k〉〈φm+k| ⊗ |φl 〉〈φm|. (18)
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Taking the partial trace over the first system yields

ρ2 := Tr1(|8 jk〉〈8 jk |) = 1

N

N−1∑
l=0

|φl 〉〈φl |. (19)

Thus SN(ρ2) = 1. The state|8〉 given by (14) is a maximally entangled state.
Thus the other states are obtained by a local unitary transformation (15) from the
maximally entangled one.

For N = 2 we find the Bell states given above. ForN = 3 we obtain the nine
states

1√
3

(|00〉 + |11〉 + |22〉)

1√
3

(|00〉 + ei 2π
3 |11〉 − ei π3 |22〉), 1√

3

(|00〉 − ei π3 |11〉 + ei 2π
3 |22〉)

1√
3

(|10〉 + |21〉 + |02〉), 1√
3

(|01〉 + |12〉 + |20〉)

1√
3

(|02〉 + ei 2π
3 |10〉 − ei π3 |21〉), 1√

3

(|02〉 − ei π3 |10〉 + ei 2π
3 |21〉)

1√
3

(|01〉 + ei 2π
3 |12〉 − ei π3 |20〉), 1√

3

(|01〉 − ei π3 |12〉 + ei 2π
3 |20〉)

where|00〉 = |0〉 ⊗ |0〉 etc and|0〉, |1〉, |2〉 denote the standard basis inC3.
Given an entangled state inCN ⊗ CN it is important to know if it can be

distilled, i.e.r copies of it can be transformed by local operations and classical
communication intos copies of|8〉. State distillability, or useful quantum corre-
lations, offer an alternative way of analyzing quantum nonlocality. All bipartite
entangled pure states can be reversibly transformed using local operations and
classical communication into|8〉 (in the so-called asymptotic regime).

The set of theN2 projection matrices

{X jk = |8 jk〉〈8 jk | : j , k = 0, 1,. . . , N − 1}

describe the generalized Bell measurement. An application of the Bell measure-
ment is in teleportation. For any matrix

Ô =
N−1∑
m=0

N−1∑
n=0

Omn|φm〉〈φn|
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we have
N−1∑
j=0

N−1∑
k=0

V̂jk ÔV̂∗jk = N(TrÔ)IN . (20)
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