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Fully Entangled Quantum States in CY’
and Bell Measurement
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Entangled quantum states are an important component of quantum computing tech-
nigues such as quantum error-correction, dense coding, and quantum teleportation. We
describe how to generate fully entangled states in the Hilbert sp¥l@ CN starting

from a unitary matrix and show that they form an orthonormal basis in this space.
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Entanglement (Hardy and Steeb, 2001; Nielsen and Chuang, 2000;
Preskill, 2000; Schodinger, 1935; Steeb and Hardy, 2000, 2002) is the charac-
teristic trait of quantum mechanics that enforces its entire departure from classical
lines of thought. We consider entanglement of pure states. For example in the
product Hilbert spac€?® C? the Bell states
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are fully entangled states and form an orthonormal bas@‘irHere{|0), |1)} is
an arbitrary orthonormal basis in the Hilbert sp& If we choose
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If we choosep = 0 andd = 0 which simply means we choose the standard basis
for |0) and|1) (i.e.|0) = (1 0)" and|1) = (0 1)" we find that the Bell states take
the form
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We describe how to generate fully entangled states in the Hilbert §pbgeCN =
CN* and show that they form an orthonormal basis in this space.
Consider the Hilbert spac@". Let

{lg) :k=0,1,...,N—1) 1)

be an orthonormal basis in’\CThus(qb,- l¢k) = ik and
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wherely istheN x N unit matrix. The last relation is the completeness relation.
Next we define the matrix

U= ) o) (bl + [dn-1) (ol ®3)
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Thus we can also write

pzd
|
o,

U= |¢k modN><¢k+1 modN | (4)
0

x
I

For example, inC2 we obtain the Pauli maitrixy, if |¢o) = (1 0) and|¢y) =
(0, 1)" and the Pauli matrix; if |¢o) = (1 1) and|¢,) = f(l 1)

The set of matricegJ, U?, ..., UN} form a commutative group under matrix
multiplication whereUN = Iy. We also havetty) = 0and det)) = —1if Nis
even and det{) = 1if N is odd. The eigenstates of the unitary matiixsatisfy

Ul6;) = exp(i6;)l6;), j=0,1,...,N—1 (5)

where 0; := 27j/N. Thus the set of eigenvalugexp(-id;):j=0,1,...,
N — 1} form a commutative group under multiplication. The group given above
and this group are isomorphic. Fir— co we have the Lie group U (1).

For the standard basis @ the matixU is given by

0100..0
0010..0

U=|[: 0 ®)
0000..1
1000..0

Then the set of matricgs), U?, ..., UN} is a subgroup of the group of all x N
permutation matrices under matrix multiplication.

Schwinger (2000) showed that thex N matricesU (given by (6)) and the
N x N diagonal matrix

10 0 0
0¢ O 0
2|0 0 ¢2 0
00 0 .. ¢\t

where¢N = 1 satisfy the relatioWZ = ¢ ZU. Furthermore the set of matrices
Uzl :k,j=0,1,...,N—-1}

provide a basis in the Hilbert space (Steeb, 1998) oNalt N matrices oveC

with the scalar producgtA|B) := tr(AB*)/N. Schwinger (2000) also noticed that

if one goes from the discrete finite dimensional case to the continuous case the
position-momentum description is recovered.
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The normalized eigenvectors Of given by (3) are
N-1

1 . .
65) = < g exp(—i 27 K)| ) ©)

wherej =0, 1,..., N — 1. If we considetJ given by (6) (i.e. the standard basis
is selected), then we find the eigenvectors
1
VN
Thus for the eigenvalue 1 &f we find the normalized eigenvector
1
VN

The eigenstate$|6;) : j =0, 1,..., N — 1} and the orthonormal basis given
above are connected by the discrete Fourier transform

(1, expEi2rj/N), explidmj/N), ..., expi2(N — 1)j/N).

a,1,...,1)".

1 N-1 1 N-1
10)) = —= ) expiko))lg), Iox) = —= ) exp(ko;)l6;). (8)
J \/NKXZ(; J m]; 17171
Next we introduce the two matrices
N-1 R N-1
A= "Kig) (g, 0= 0j10;)(6;l. ©)
k=0 j=0

We have [, 8] = 0. The hermitian matrixi can be considered as the number
operator with the eigenvalues 0, 1,.2,, N — 1. The matrixAi is diagonal in the
standard basis. The matifixs called the Pegg—Barnett phase operator (Pegg and
Barnett, 1997). We note that an outstanding problem in quantum mechanics is the
search for a “proper” phase operator. A number of theories for such operators have
been proposed, but most of them succumb to one or more of three shortcomings:
(i) the operator is non-selfadjoint, (i) no scheme for an experimental realization,
(i) the operator is operationally defined, leaving the questions open as to what
observable the measurement apparatus really represents and what the conjugate
observable is (Trifonoet al., 2000).

The matrixf has the property

exptiojn)|pk) = expEEiojk)¢x), expetio;n)|ek) = [6ksjmoan).  (10)
The matrixd has the properties
expEEikd)[0;) = exp@iko))6;), experikd)lgm) = [pmekmoan).  (11)

Note that the matrice& andé do not commute. Using these two matrices we
introduce the matrices

Vik := exp(6;h) exp(=ik) (12)
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where j,k=0,1,...,N —1 and Vg = In. Obviously theseN? matrices are
unitary. Inserting (9), (10), and (11) into (12) we can write

N-1

Vik = Z exp( ;M) dmmodn ) {|Pm+kmodn |- (13)
m=0
Let
1 N-1
D) = — ® 14
| D) mk;mm |x) (14)

where® denotes the Kronecker product of matrices (Steeb, 1997). This state is
independent of the chosen basis in each subsystem. Using this state we define the
N2 states

i) = (Vik ® In)|®) = (exp(6; 1) exp(-ikd) ® In)®P) (15)
where|®) = |Pqo). It can easily be shown that thé? vectors|® ) form an
orthonormal basis in the Hilbert spa@é‘z, i.e. we havg® i |Pmn) = 8jmdkn and

N-1N-1

SN @] = In® Iy = .

j=0 k=0

The measure for entanglement for pure std€s/)(v|) is defined as follows
(Hardy and Steeb, 2001; Nielsen and Chuang, 2000; Preskill, 2000; Steeb and
Hardy, 2000, 2002)

E(IY) (¥ ]) = Siime) (0r:) = Stim@) (07,) (16)
whereH; = H, = CN and the density operators are defined as

pHy = Tl ) (W], o, o= Trag ) (] (17)
andS(p) := —Trplog, p. Tr denotes the trace and/Jrdenotes the partial trace

over H;. We use the bask for the logarithm log. We have 0log0 = 0 and
llog,1=0. Thus O< E < 1. If E = 1 we call the pure state maximally entan-
gled. If E = 0, the pure state is not entangled. We note that

k
S(p) == =) +jlogy
j=1
where{Aj : j =1,..., k} are the eigenvalues pfandp is a linear operator on a
k-dimensional Hilbert space.
Using this definition for entanglement of pure states we find that the states
|® ;) are maximally entangled. We obtain

N—-1N—

1 N—-1
D5 @jl = 1 D D exp6; (| — m)idr ) (Bmikl © I} dml. (18)
=0

1=0 m
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Taking the partial trace over the first system yields

1 N—-1
p2 1= Tra(1 @) (@jl) = 15 > 1) (- (19)
=0

Thus Sy(p2) = 1. The statd®) given by (14) is a maximally entangled state.
Thus the other states are obtained by a local unitary transformation (15) from the
maximally entangled one.

ForN = 2 we find the Bell states given above. Bdr= 3 we obtain the nine

states
i(|00) + 111) + |22))
V3
1 2r i . .
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1 - (21
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1 i 2t HEd HEd i 21
—(]01) + €512 — €3|20)), —(]0D —€'3|12) + €520
ﬁ(l )+ €512 — €3]20)) ¢§(| ) —€3]12) + €73 120)
where|00) = |0) ® |0) etc and|0), |1), |2) denote the standard basisGA.

Given an entangled state @Y ® CN it is important to know if it can be
distilled, i.e.r copies of it can be transformed by local operations and classical
communication intes copies of|®). State distillability, or useful quantum corre-
lations, offer an alternative way of analyzing quantum nonlocality. All bipartite
entangled pure states can be reversibly transformed using local operations and
classical communication infa@) (in the so-called asymptotic regime).

The set of theN? projection matrices

{Xjk =P (Pl :j,k=0,1,...,N =1}
describe the generalized Bell measurement. An application of the Bell measure-
ment is in teleportation. For any matrix

Z
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we have

P4
|

.

z

-1
VikOVji = N(TrO)ly. (20)
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